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Abstract— An approach of Internal Model Control (IMC) of 

linear multivariable (MIMO) sampled Uncertain systems is 

proposed in this paper. The latter discusses the robustness of 

such sampled system with parametric uncertainty using 

Kharitonov's theorem and Jury stability criterion. An 

application is then presented to show the reliability of the 

proposed design approach by ensuring stability and rejecting 

disturbances. 
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I. INTRODUCTION 

 

     Industrial systems are very frequently multivariable. They 

have more than one control input and more than one output. 

Depending on their number, there are three classes of systems, 

namely: Fully actuated system (square system is a system 

having the same number for inputs and outputs), Over-

actuated system (non-square system that their number of 

inputs is superior than that of outputs) and Under-actuated 

system (a system where the number of inputs is inferior than 

the number of outputs) [1, 2, 3, 6, 12]. In this work, we are 

interested in systems having the same number of input-

outputs and functionally controllable. 

      The objective of the control is then to obtain a desirable 

behaviour of several outputs variables simultaneously, by the 

manipulation of several inputs. The realization of these 

control law is based on the modelling of systems.  

   Nevertheless the model, the regulator are generally and 

initially given in a continuous time model in the form of a 

transfer function matrix for multivariable systems, but in 

some experimental applications, we need to discretise the 

continuous time model. Then, we distinguish different 

discretization techniques to convert continuous systems into 

discrete systems such as impulse invariant method, bilinear 

transformation (Tustin transformation), state-transition 

method, … [1, 4, 5]. In this paper, we are interested in the 

Impulse Invariant Method discretization which produces a 

discrete time model in such a way that the impulse response 

is the same (invariant) at the sampling instants. 

    The calculation of any physical process control requires 

necessarily a model which can never be a perfect 

representation of reality: there are always uncertainties of 

modelling, whose consequence is that the behaviour of a 

physical system cannot be described exactly by a 

mathematical model [7, 8]. Indeed, there are different 

approaches that are proposed for the synthesis of the control 

law for uncertain multivariable systems such as the control of 

the internal model that was introduced by Garcia and Morari 

in 1982 and supplemented by a series of publications by these 

same authors [9, 10, 11]. 

   The IMC is a powerful controller design strategy for linear 

systems, using a process model controlled by the same 

control input applied to the process. It is exploited in the 

industrial systems by these robustness advantages, the 

simplicity of construction and the compensation of the errors 

of modelling. 

   The objective of this work is the application of the internal 

model control of a class of multivariable uncertain discrete 

systems that is an extension of the IMC structure applied in 

[1]. This paper is organised as follows. Section II is dedicated 

to the design of the internal model control of multivariable 

discrete system. Section III presents the notion of uncertain 

systems and defines the kharitonov theorem that allows us to 

study the stability of uncertain systems. In Section IV, an 

application is applied to an uncertain discrete multivariable 

system to show the robustness and validity of this proposed 

design which provides stability and preserves system 

performances despite parametric uncertainties and external 

disturbances. 

II. IMC OF MULTIVARIABLE DISCRET SYSTEMS 

A. Proposed IMC Structure for Multivariable Systems 

 

    The Internal Model Control (IMC) takes up the basic 

principle of the open loop control, which represents a major 

interest for stability, integrating the advantages of the closed 

loop allowing the rejection of disturbances and modelling 

errors. 
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     The IMC incorporates a simulation of the process by an 

internal model in its control structure. Its application mainly 

concerns the stable systems in open loop. The difference 

which can exist between the outputs of the process and its 
model is brought back at the entrance of the control block. 

The regulator, obtained like reverse approximated of the 

model, acts simultaneously on the process and its model in 

order to compensate for this variation [10, 13]. 

    The IMC structure of a multivariate system, having 

m_inputs  -  m _outputs can be schematized as shown in 

Figure 1:  

 

Fig. 1  Basic IMC structure of multivariable system  

 

      The configuration of the IMC controller for multivariable 

systems is represented by: 

- G(z) and M(z): are respectively the matrices of 

transfer of multivariable system and its model of 

dimension (m x m). 

- C(z): the transfer matrix controller of dimension    

(m x m). 

- y and ym: present respectively the output vectors of 

the process and the model of dimension (m x 1) .  

- :  the perturbation vector and of dimension (m x 1).  

- d: present the difference between the output and its 

model. 

- r: is the reference vector of dimension (m x 1). 

 

This control structure is defined by the following equations: 

       ( )md y y G M u v                                           (1) 

       ( )
( )m

C
u r v

I C G M
 

 
                                       (2) 

      
( ) ( )

m

m m

I CMGC
y r v

I C G M I C G M


 

   
             (3) 

with Im  is the identity matrix. 

 

     The synthesis of an IMC corrector that is equal to the 

direct inverse of the model is essential in order to ensure a 

perfect follow-up of the reference instructions. 

Then, an inversion method has been proposed in [14, 13] to 

obtain the following IMC regulator: 

 

Fig. 2 Blocks of the inversion proposed in the multivariable case 

 

with: 

 

K1 : is a square matrix of inversion of dimension (m x m) 

     The inversion matrix K1 is an invertible square matrix. It 

must provide regulator stability. We can choose K1 of the 

form:  

                                     1 mK a I                                        (4) 

such as a    

 

     From Figure 2, the IMC regulator transfer matrix can be 

expressed by the following expression: 

 

1

1

1 1

( ) 1
( )

( ) ( ) ( )m

Ku z
C z

e z I K M z K M z
  

 
             (5) 

 

In order to approximate the controller transfer function C(z) 

to M(z)
-1

 , we should just select the gain  a  sufficiently high. 

So, we obtain: 

 

               
1( ) ( )C z M z 
                                                    (6) 

 

The matrix of the static gains of the regulator C(1) can be 

expressed according to the matrix of the static gains of the 

system  M(1) . It is defined by the equation: 

       
1

11
1

1

(1) (1)
(1)m

K
C K M

I K M


  


                  (7) 

 

     However for certain cases, for example for systems with 

instable zero or time-delay, the coefficient K1 ensuring the 

stability of the regulator cannot be chosen sufficiently high. 

What can involve the degradation of the precision of the 

system (i.e. the static error is non-null). In order to treat such 

problem, a second structure CMI can be proposed for this 

class of dynamic systems by adding a second gain matrix K2 

which aims to compensate for the static errors of the 

multivariable system as shown in figure 3. 
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Fig. 3 Generalized multivariable controller structure 

K2 can be written in the following form: 

                 
1 1

2 1 1( (1)) (1)mK K I K M M                    (8) 

 

We can then express the control vector C(z) in the following 

form: 

               
1

2 1 1( ) ( ( ))mC z K I K M z K                          (9) 

 

   The stability of the proposed controller given in (9) depends 

on the stability of the model and a best choice of K1. 

B. IMC’s Stability 

 

We can note that the output vector can be written in the 

following form in order to replace C(z)  by its expression 

given in (9): 

         ( ) ( ) ( ) ( ) ( )r vy z y z r z y z v z                          (10) 

with: 

          2 1
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r
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( )

( ) ( )

m m
v
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y
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 

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The stability of IMC structure depends on the stability of 

the process to be controlled, its model and the proposed 

regulator. So, to ensure the stability of the system, it is 

necessary that each block of the IMC structure is stable in 

open loop. Given a stable process and model, controller 

stability only depends on K1. 

 

III. UNCERTAIN DISCRET SYSTEMS 

 

   Generally, uncertainties are grouped into two categories, 

structured uncertainties and unstructured uncertainties. The 

first type is often called parametric uncertainty and the 

second dynamic uncertainty.  

   The structured uncertainties may be represented by 

variations of certain physical system parameters over some 

possible value ranges (complex or real). This type of 

uncertainties is due to the fact that the parameters could not 

be accurately modelled or measured. They affect the low-

frequency range performance. 

    Unstructured uncertainties are the ones that affect the 

system even without having any structural information; this 

might be due to high frequencies and dynamic uncertainties. 

Generally, this type of uncertainty can be represented as 

additive by an unknown transfer function matrix (input 

multiplicative or output multiplicative). In this work, we are 

interested of a linear system with parametric uncertainties [7, 

8]. 

We consider in this paper a multivariable linear system given 

by a transfer function matrix G(z) such as: 

      
1,2,...,

( ) ( ) ;
1,2,...,

i j

i m
G z G z

j m


 


                               (11) 

 

If we suppose the presence of parametric uncertainties, Gij(z) 

is written in the following form: 

     

1

1 0

1

1 0

( ) ...
( )

( ) ...

m m
ij m m

ij n n

ij n n

N z b z b z b
G z

D z a z a z a









  
 
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          (12) 

with: 

1 1 1 1 1 1

0 0 0 0 0 0

[ , ] [ , ]

[ , ] [ , ]

; . .

. .

[ , ] [ , ]

m m m n n n

m m m n n n

b b b a a a

b b b a a a

n m and

b b b a a a

   

   

     

   

  
 

  
 

  
 
 
   

  

 

A. Uncertain System’s Stability 

    There are different methods to study the robust stability of 

the system depending on the type of transfer function 

parameters. If the coefficients are time-invariant, we can use 

the Jury stability criterion to check the discrete system 

stability. But, if there is uncertainty concerning the 

parameters of the transfer function, it is necessary to use 

Kharitonov's theorem to study the linear system stability [7, 

15]. 

Kharitonov’s theorem:   

Kharitonov's theorem allowed characterizing the stability of a 

system subjected to bounded parametric uncertainties on the 

transfer function coefficients. 

Let the characteristic polynomial P be described by the 

following equation: 

        
2

0 1 2( ) ... n

nP z l l z l z l z    
                 

(13) 
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Where il   are known only in specified ranges such as 

i i il l l  
 
for i=1; 2 ; … ; n. 

 

The polynomials family P is stable if and only if the 

following four Kharitonov polynomials (P1 , P2 , P3 and P4)  

are stable [15]: 

 
2 3 4

1 0 1 2 3 4

2 3 4

2 0 1 2 3 4

2 3 4

3 0 1 2 3 4

2 3 4

4 0 1 2 3 4

( ) ...

( ) ...

( ) ...

( ) ...

P z l l z l z l z l z

P z l l z l z l z l z

P z l l z l z l z l z

P z l l z l z l z l z

    

    

    

    

      


     


     
      

             (14) 

 

We then obtain the Kharitonov polynomials corresponding to 

D: 
2 3 4

1 0 1 2 3 4

2 3 4

2 0 1 2 3 4

2 3 4

3 0 1 2 3 4

2 3 4

4 0 1 2 3 4

( ) ...

( ) ...

( ) ...

( ) ...

D z a a z a z a z a z

D z a a z a z a z a z

D z a a z a z a z a z

D z a a z a z a z a z

    

    

    

    

      


     


     
      

        (15) 

B. Uncertain System’s Control 

 

     The main aim of the robust control for an uncertain system 

is to guarantee the performances and the stability of a system 

despite of the risks and fluctuations which can affect the 

system during its operation. 

    There exists a difference between the observed behaviour 

of the real system and its nominal model. The main problem 

of this type of control is the control law synthesis in closed 

loop, to guarantee the imposed performance despite model 

imperfections, uncertainties and external disturbances. 

IV. APPLICATION 

      Considering the transfer matrix G(z) of the uncertain 

multivariable process with two inputs-two outputs. 

Uncertainties occur at the level of the first element of this 

matrix G11(z) . It is defined by the following transfer matrix:  

 

    

1 0

2

1 0

0

2

1

2
( ) ( )

1 3

4 3 2 4

b p b

p a p a p
G z Z B p

p

p p p

   
    
  
  
  

    

         (16) 

With:  

0 0min 0max[ , ] [1,4]b b b    

1 1min 1max[ , ] [1,2]b b b   

0 0min 0max[ , ] [1,3]a a a   

1 1min 1max[ , ] [1,4]a a a   

 

This uncertain system is represented by the following 

nominal model: 

  

2

0

2

1.5 2.5 1

2.5 2 2
( ) ( )

1 3

4 3 2 4

p

p p p
M z Z B p

p

p p p

   
    
  
  
      

         (17) 

A. Application of the IMC without K2 

 

    Firstly, let’s consider the case characterized by the absence 

of disturbances. 

For a reference vector that is chosen as steps of amplitude 1 

applied at  t=0s  , the simulation results for a gain K1=2  and a 

sampling time Te=0.1s  are given in figures 4 and 5. 

  

 

Fig. 4 Output signal y1 without K2 

 

 

Fig. 5 Output signal y2 without K2 

 

    It can be remark from these two figures that the internal 

model control applied maintains the stability of the chosen 

discrete multivariable system despite the absence of the gain 

K2 and the presence of uncertainties. Then, K1 gain is 
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responsible for maintaining stability. But, it is clear that the 

outputs y1 and y2 do not describe perfectly the reference 

signals. 

 

B. Application of the IMC with K2 

 

    Let’s consider now the presence of the gain K2 where K2   

defined by (8). For the same reference and a sampling period 

Te=0.1s and K1=2, the figures 6 and 7 present the simulation 

results: 

 

Fig. 6 Output signal y1 with K2  

 

 
 

Fig. 7 Output signal y2 with K2 

 

     We compare Figures 4 and 5 with Figures 6 and 7, we 

remark that the outputs of the system perfectly reach the input 

reference when adding K2; the added gain K2 then is able to 

compensate for the static error as desired. In this way, we can 

see that the system remains stable despite the presence of 

uncertainties. 

 

For the same references and the regulator used previously, we 

must change the sampling period now. 

For Te=0.2s, the simulation results are given in figures 8 

and 9. 

 
 

Fig. 8 Output signal y1 for Te=0.2s 

 
Fig. 9 Output signal y2 for Te=0.2s 

 

For Te=0.3s, the simulation results are given in figures 10 

and 11. 

 

 
 

Fig. 10 Output signal y1 for Te=0.3s 

 

 
 

Fig. 11 Output signal y2 for Te =0.3s 
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From Figures 8 - 11, it can be shown that as for the same 

value of gains K1 and K2 , a high value of the sampling time 

can result in deterioration of closed loop system performances. 

C. Application of the IMC with disturbances 

 

     Let’s consider now the presence of external disturbances 

in the form of a unit steps. And, let’s show its effect in the 

case of the internal model control proposed. The simulations 

results are given by the figures 12 and 13. 

 

Fig. 12 Output signal y1 with disturbances 

 

Fig. 13 Output signal y2 with disturbances 

 

Significant peaks of the input signals appear at the moment 

already chosen for the disturbances, it is clear that the discrete 

uncertain system controlled by IMC is able to maintain 

stability despite external disturbances. 

The figures show a robust behaviour even on the presence 

of disturbances directly affecting the outputs of the process. 

 

 

 

 

V. CONCLUSIONS 

 In this paper an approach for IMC of linear fully actuated 

discrete uncertain systems is developed. This approach uses 

an internal model that is nominal of the uncertain system. The 

chosen system is a two-input-two-output linear system. 

Satisfactory results have been obtained showing the 

robustness of this approach to maintain stability and reject 

external disturbances. 
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